(13) The identity of this species, which is most likely solvent coordinated, was established through protonation of FpCH_{3} in this medium which leads to methane and the $\mathrm{CpFe}(\mathrm{CO})_{2}{ }^{+}$species identical by ${ }^{1} \mathrm{H}$ NMR with that observed here. For a similar protonation, see A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 3653 (1962).
(14) The CO resonances in 4 are equivalent down to $-40^{\circ} \mathrm{C}$. This suggests a symmetrical geometry in which the $\mathrm{C}_{\text {lpso }}-\mathrm{C}_{1}-\mathrm{H}$ plane blsects the $\mathrm{CO}-$ $\mathrm{Fe}-\mathrm{CO}$ angle (as shown) or an unsymmetrical geometry with rapid rotation about the $\mathrm{Fe}-\mathrm{C}_{1}$ bond. The symmetrical structure is favored by analogy to the contrasting geometries of ethylene and methylene groups in $\mathrm{Cp}_{2} \mathrm{Nb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)^{15}$ and $\left.\mathrm{Cp}_{2} \mathrm{Ta}\left(\mathrm{CH}_{3}\right) \mathrm{KCH}_{2}\right)$, ${ }^{8 \mathrm{c}}$ respectively, and the knowledge that the π bond of an olefin bound to $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Fe}^{+}$lles perpendicular to the plane bisecting the $\mathrm{CO}-\mathrm{Fe}-\mathrm{CO}$ angle. ${ }^{16}$
(15) L. J. Guggenberger, P. Meakin, and F. N. Tebbe, J. Am. Chem. Soc., 96, 5420 (1974).
(16) B. M. Foxman, J. Chem. Soc., Chem. Commun., 221 (1975).
(17) The $J_{\mathrm{C}_{1-H}}$ coupling constants in $\mathbf{4}$ and 5 (145 and 136 Hz , respectively) are substantially less than might be expected for a trigonal sp^{2}-hybridized carbon. A speculatlve explanation for these low values is that the H -$\mathrm{C}_{1}-\mathrm{C}_{\text {lpso }}$ angle is less than 120° and that the s character of the $\mathrm{C}_{1}-\mathrm{H}$ bond has decreased relative to a trigonal sp^{2} model. In accord with this view is the report by Schrock of a $\mathrm{C}_{\text {certene-H }}$ of 132 Hz in $\mathrm{Cp}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{Ta}=\mathrm{CH}_{2}$ and correspondingly a $\mathrm{H}-\mathrm{C}_{\text {carbene }}-\mathrm{H}$ angle of only $\sim 107^{\circ}(\pm 9) .8 \mathrm{~b}, \mathrm{c}$
(18) M. H. Chisholm and S. Godleski, Prog. Inorg. Chem., 20, 299 (1976)
(19) B. Cetinkaya, M. F. Lappert, and K. Turner, J. Chem. Soc., Chem. Commun., 851 (1972).
(20) The ortho, meta, and para ${ }^{13} \mathrm{C}$ resonances of 3 appear in the range of 124-128 ppm.
(21) G. J. Ray, R. J. Kurland, and A. K. Colter, Tetrahedron, 27, 735 (1971).
(22) (a) J. A. Connor, E. M. Jones, E. W. Randall, and E. Rosenberg, J. Chem. Soc., Dalton Trans., 2419 (1972); (b) O. S. Mills and A. D. Redhouse, J. Chem. Soc. A, 642 (1968).
(23) In a typical preparation, 1.0 g of ether 3 in 25 mL of methylene chloride at $-20^{\circ} \mathrm{C}$ was treated with 1.3 g of trityl hexafluorophosphate. The orange hexafluorophosphate salt of 4 precipitated from solution and additional salt was obtained by treatment with 50 mL of pentane. Filtration and vacuum drying yielded 1.1 g of the hexafluorophosphate salt of 4 ($\sim 77 \%$ yield).
(24) C. P. Casey and S. W. Polichnowski, J. Am. Chem. Soc., preceding paper in this issue.

Maurice Brookhart,* Gregory O. Nelson
 Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514

Received May 31, 1977

Inversion Barriers of AsH_{3} and $\mathrm{SeH}_{3}{ }^{+}$

Sir:
The inversion barriers of group 5A molecules have been the subject of many studies. ' The simplest molecules of this type are the hydrides of general formula AH_{3}, but, owing to the large magnitude of the inversion barriers in these molecules, only the barrier in NH_{3} has been measured experimentally. ${ }^{2}$ Several theoretical determinations of the barrier in NH_{3} at the Hartree-Fock level are in excellent agreement with experiment. ${ }^{3}$ In addition, the inversion barriers for a variety of hydrocarbon-substituted phosphines and arsines have been obtained experimentally; ${ }^{1}$ for example, the barriers in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \mathrm{AR}$, where R is an alkyl or aryl group and A is P or As, are $\sim 33 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{A}=\mathrm{P}$ and $\sim 43 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{A}=$ As. ${ }^{4}$ Accurate calculations of the barrier in PH_{3} give ~ 36 $\mathrm{kcal} / \mathrm{mol},{ }^{5}$ which is quite similar to the experimental results for the substituted compounds. Similar results are found for hydrocarbon-substituted amines. The values of the inversion barriers for simple AH_{3}-type molecules are, therefore, of considerable chemical interest. In this paper we present ab initio SCF calculations using large basis sets on the pyramidal and planar forms of AsH_{3} and the isoelectronic $\mathrm{SeH}_{3}{ }^{+}$ion. We estimate the inversion barriers to be 46 and $30 \mathrm{kcal} / \mathrm{mol}$, respectively. In addition, we present optimized minimum basis set exponents and geometries for these molecules and show that the minimum basis set inversion barriers for AsH_{3} and $\mathrm{SeH}_{3}{ }^{+}$ are 44 and $35 \mathrm{kcal} / \mathrm{mol}$, respectively, in reasonable agreement with the more reliable large basis set calculations.

All calculations employed Slater orbital basis sets and computer programs previously described. ${ }^{3}$ The large basis sets (Table I) were of the "polarized double zeta" type augmented by one additional 3d function on the central atom to ensure

Table I. Large Basis Set Geometries and Exponents

Molecule	Geometries		
	Symmetry	Bond length, \AA	Bond angle, degree
AsH_{3}	C_{30}	1.520	91.6
	$D_{3 h}$	1.480	120
$\mathrm{SeH}_{3}{ }^{+}$	C_{30}	1.450	93.0
	$D_{3 h}$	1.434	120
		Basis sets	
		As	Se
	1 s	34.0214	35.0365
	$1 s^{\prime}$	23.6356	24.3614
	2 s	16.2147	16.5867
	$2 s^{\prime}$	13.2611	13.7371
	3 s	7.55246	7.95809
	$3 s^{\prime}$	5.31126	5.66700
	4 s	2.931	3.188
	$4 s^{\prime}$	1.736	1.918
	2 p	21.7642	22.4336
	$2 \mathrm{p}^{\prime}$	13.3553	13.8318
	3p	7.0563	7.27814
	$3 \mathrm{p}^{\prime}$	4.50827	4.68101
	4 p	2.493	2.699
	$4 \mathrm{p}^{\prime}$	1.403	1.503
	3 d	11.961	12.018
	$3 \mathrm{~d}^{\prime}$	6.544	6.611
	$3 \mathrm{~d}^{\prime \prime}$	3.482	3.658
	4d	2.270	2.440
	His	1.331	1.431
	H 2 s	1.4054	1.7054
	H2p	1.500	1.340

adequate treatment of the 3 d orbitals. The inner shell exponents on the central atom were taken from best atom double zeta results, ${ }^{6}$ while the 3 d and valence orbital exponents were optimized for the ground state of the free atom. The exponent for the 4 d polarization function on As and Se was chosen by a nalogy to an optimized value of the corresponding polarization function in $\mathrm{PH}_{3} .{ }^{56.7}$ The hydrogen basis sets were chosen as that of PH_{3} for AsH_{3} and that of $\mathrm{SH}_{3}{ }^{+}$for $\mathrm{SeH}_{3}{ }^{+} .{ }^{8}$ Similar quality basis sets are known to yield calculated barriers within $1-2 \mathrm{kcal} / \mathrm{mol}$ of the Hartree-Fock limit for PH_{3}. For instance, polarized double zeta Slater orbital calculations on PH_{3} yield a calculated barrier of $37 \mathrm{kcal} / \mathrm{mol},{ }^{5 \mathrm{a}}$ compared with a very large gaussian lobe basis (including f functions) of $38 \mathrm{kcal} /$ mol. ${ }^{5 d}$

For the large basis set calculations, the geometry of AsH_{3} was taken from experiment, ${ }^{9}$ while the bond length for the planar molecule was shortened $0.04 \AA$ by analogy to accurate geometry optimizations for $\mathrm{PH}_{3} .{ }^{5}$ This bond-length shortening is also consistent with optimized minimum basis set results described below. Estimates of the possible errors in the calculated barrier for AsH_{3} due to inaccuracies in the transition state bond length can best be made by comparison with PH_{3}. For PH_{3}, the $\mathrm{P}-\mathrm{H}$ stretching force constants in the planar form calculated at the minimum basis set SCF and the polarized double zeta SCF-CI levels of approximation differ by only $\sim 15 \%$. Calculation of the corresponding minimum basis set force constant for planar AsH_{3} allows us to estimate a maximum error of $1.0 \mathrm{kcal} / \mathrm{mol}$ in our calculated barrier owing to inaccuracies in the bond length in the planar form, assuming the estimated transition state bond length of $1.480 \AA$ is within $0.030 \AA$ of the correct value and the minimum basis set force constant is accurate to within 30%. For pyramidal $\mathrm{SeH}_{3}{ }^{+}$, the bond length and angle were assumed to be $1.45 \AA$ and 93°, respectively, and the bond length of the planar molecule was fixed at $1.434 \AA$. These values were obtained from optimized minimum basis set results (see below) along with estimates of minimum basis set errors associated with several other AH_{3} molecules. ${ }^{3.56 .10}$ We expect that all geometries are accurate

Table II. Total Energies and Inversion Barriers								
Molecule	Basis set	Symmetry	Energy a	Inversion barrier ${ }^{b}$				
AsH $_{3}$	Large	C_{30}	-2235.9713	46.4				
	Large	$D_{3 h}$	-2235.8974					
	Minimum	$C_{3 v}$	-2229.0258	43.8				
	Minimum	$D_{3 h}$	-2228.9560					
$\mathrm{SeH}_{3}+$	Large	C_{30}	-2401.3096	29.8				
	Large	$D_{3 h}$	-2401.2621					
	Minimum	$C_{3 v}$	-2394.2406	35.3				
Minimum						$D_{3 h}$	-2394.1844	

${ }^{a}$ Atomic units. ${ }^{b}$ Kilocalories/mole.
Table III. Minimum Basis Set Geometries and Exponents

Molecule	Geometries		
	Symmetry	Bond length,	Bond angle, degree
AsH_{3}	$C_{3 v}$	1.528	93.64
	$D_{3 h}$	1.467	120
$\mathrm{SeH}_{3}{ }^{+}$	C_{30}	1.465	95.65
	$D_{3 h}$	1.444	120
Basis Sets			
As		Se	
1 s	32.278	33.255	
2 s	12.064	12.448	
3 s	6.198	6.466	
2p	14.537	15.033	
3p	5.950	6.235	
3d	5.797	6.159	
$2.326\left(C_{3 v}\right), 2.405\left(D_{3 h}\right)$		$2.569\left(\mathrm{C}_{3 \mathrm{v}}\right), 2.589\left(\mathrm{D}_{3 h}\right)$	
$2.054\left(C_{3 v}\right), 1.977\left(D_{3 h}\right)$		$2.280\left(C_{3 c}\right), 2.221\left(\mathrm{D}_{3 \mathrm{~h}}\right)$	
His 1.06	$\left.C_{30}\right), 1.10\left(D_{3 h}\right)$		

to $\pm 0.02 \AA$ and $\pm 1.5^{\circ}$. Each large basis set calculation (61 orbitals) required 35 min of CPU time on an IBM 360/91.

Since previous work on $\mathrm{NH}_{3}{ }^{3}$ and $\mathrm{PH}_{3}{ }^{5 \mathrm{a}}$ suggests that these barriers may also be obtained from minimum basis set calculations, we have obtained optimized valence shell exponents, geometries, and barrier heights for these molecules at this level of approximation. Exponents of the inner shell orbitals were again taken from best atom results, ${ }^{11}$ and the 3 d orbital was also treated as an inner shell after preliminary optimizations indicated that this exponent did not change from the free atom value. Each minimum basis set calculation required 0.67 min of CPU time.

It is generally assumed that inversion barriers for simple molecules can be calculated accurately at the Hartree-Fock level without corrections for correlation effects. This result is in agreement with the prediction of Freed ${ }^{12}$ and has been critically tested by ab initio SCF-CI calculations using large basis sets on $\mathrm{NH}_{3},{ }^{3} \mathrm{PH}_{3},{ }^{5} \mathrm{CH}_{3}-,{ }^{13}$ and $\mathrm{SH}_{3}+.{ }^{14}$ Although accurate theoretical values for the inversion barriers of these molecules are known, only semiempirical estimates for the barrier in AsH_{3} have previously been made. For instance, CNDO calculations on AsH_{3} yield a barrier of $54.5 \mathrm{kcal} /$ mol. ${ }^{15}$ Our new large basis set values for $\mathrm{AsH}_{3}(46.4 \mathrm{kcal} / \mathrm{mol}$, Table II) and $\mathrm{SeH}_{3}+(29.8 \mathrm{kcal} / \mathrm{mol})$ should be accurate to within a maximum of $10 \% .^{16}$ The barrier in AsH_{3}, as was found for PH_{3}, is slightly larger than the barriers for substituted AsR_{3} molecules where R is a hydrocarbon. The Koopmans' theorem ionization potential for AsH_{3} is 10.27 eV , compared with the experimental value of $10.03 \mathrm{eV} .{ }^{17}$

In Figures 1 and 2, we illustrate electron density contour maps for the highest occupied molecular orbital of the pyramidal and planar forms of AsH_{3}. Of particular interest is the substantial amount of electron density found at the hydrogen atom in the pyramidal form. A recent discussion ${ }^{18}$ of inversion

Figure 1. Total electron density of the highest occupied molecular orbital of pyramidal AsH_{3}. The plane is defined by the coordinates of As, H_{1} (denoted by +) and the average coordinates of H_{2} and H_{3} (not shown). Contour levels are $0.3,0.25,0.20,0.15,0.10,0.05,0.02,0.01,0.005$, 0.0035 , and $0.002 \mathrm{e} / \mathrm{au} .{ }^{3}$

Figure 2. Total electron density of the highest occupied molecular orbital of planar AsH_{3}. The plane is perpendicular to the plane of the molecule. Contour levels are identical with those of Figure 1.
barriers in AH_{3} molecules has stressed the importance of stabilization of the "lone pair" in the pyramidal form, and these maps suggest that such stabilization may be physically associated with delocalization from the central atom to the hydrogens. However, a detailed, quantitative explanation of these inversion barrier trends must await analysis of accurate ab initio wavefunctions and calculation of barriers in other molecules in this series. Finally, in Figure 3 we present a difference density map between the "lone-pair" orbitals of AsH_{3} and $\mathrm{SeH}_{3}{ }^{+}$in the planar forms. This map illustrates the relative diffuseness of the AsH_{3} density.

The barriers calculated using minimum basis sets are 43.8 $\mathrm{kcal} / \mathrm{mol}$ for AsH_{3} and $35.3 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{SeH}_{3}{ }^{+}$(Table II), in reasonably good agreement with the large basis set results. ${ }^{19}$ The optimized exponents and geometries are presented in Table III. Significant differences in the valence exponents are found for the pyramidal and planar structures of both molecules. The central atom 4s and hydrogen 1s orbitals both contract when going from pyramidal to planar, while the $4 p$ orbitals expand.

These new and accurate predictions of the barrier heights for AsH_{3} and $\mathrm{SeH}_{3}{ }^{+}$will be useful in understanding the nature of these barriers and also for parameterization of semiempirical methods such as CNDO. In Table IV we summarize the known barriers for AH_{3} and $\mathrm{AH}_{3}{ }^{+}$molecules, and we note that these two isoelectronic series do not even display the same trends of

Figure 3. Electron density difference map of the highest occupied molecu)ar orbitals of $\mathrm{AsH}_{3}-\mathrm{SeH}_{3}{ }^{+}$in the planar form. The plane is perpendicular to the plane of the molecules. The contour levels are $0.032,0.016$. $0.008 .0 .004,0.002,0.001,-0.001,-0.002,-0.004,-0.008,-0.016$, $-0.032 .-0.064,-0.128$, and -0.256 .
$\underline{\text { Table IV. Inversion Barriers for } \mathrm{AH}_{3} \text { and } \mathrm{AH}_{3}+\text { Molecules }}$

Molecule	Barrier a	Molecule	Barrier a
NH_{3}	6^{h}	$\mathrm{H}_{3} \mathrm{O}^{+}$	$1-2^{c, d}$
PH_{3}	36^{e}	$\mathrm{H}_{3} \mathrm{~S}^{+}$	32^{f}
AsH_{3}	46^{g}	$\mathrm{H}_{3} \mathrm{Se}^{+}$	30^{g}

"Kilocalories/mole. ${ }^{b}$ References 2 and 3. ${ }^{c}$ S. Novick, R. M. Stevens, and W. Klemperer, unpublished results. ${ }^{d}$ R. Ahlrichs, F. Driessler, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem.
 work.
relative barrier heights. Further work on other molecules in this series is anticipated to elucidate these trends more clearly.

Acknowledgment. The Milton Fund of Harvard University is gratefully acknowledged for computing support. D.A.D. thanks the Society of Fellows, Harvard University, for a Junior Fellowship. We thank Dr. R. M. Stevens for the use of his programs and helpful discussions and Mr. J. Bicerano for isssistance with the density map computations.

References and Notes

(1) For a review see L. C. Allen, A. Rauk. and K. Mislow, Angew. Chem., 9, 400 (1970).
(2) J. D. Swalen and J. A. Ibers, J. Chem. Phys., 36, 1914 (1962).
(3) R. M. Stevens, J. Chem. Phys., 55, 1725 (1971); 61, 2086 (1974), and references therein.
(4) R. D. Baechler, J. P. Casey, R. J. Cook, G. H. Senkler, Jr., and K. Mislow, J. Am. Chem. Soc., 94, 2859 (1972).
(5) (a) D. S. Marynick and D. A. Dixon, Discuss. Faraday Soc., 62, 47 (1977); (b) D. S. Marynick and D. A. Dixon. unpublished work; (c) J. M. Lehn and B. Munsch, Mol. Phys., 23, 91 (1972); (d) R. Ahlrichs, F. Keil, H. Lischka, W. Kutzelnigg, and V. Staemmler, J. Chem. Phys., 63, 455 (1975).
(6) C. Roetti and E. Clementi, J. Chem. Phys., 60, 4725 (1974).
(7) The 4 d exponent was calculated as $\zeta(4 d)=0.79\left(\zeta\left(4 p^{\prime}\right)-\zeta(4 p)\right)+$ $\zeta(4 \mathrm{p})$.
(8) Double zeta 1s and 2s hydrogen exponents were optimized for PH_{3} and $\mathrm{SH}_{3}{ }^{+}$. The exponents of the 2 p polarization functions were taken as the weighted average of the $2 p_{\sigma}$ and $2 p_{\pi}$ exponents on $\mathrm{P}_{-} \mathrm{H}$ and $\mathrm{S}-\mathrm{H}$ as calculated by P. E. Cade and W. M. Huo, J. Chem. Phys., 47, 649 (1967). These values were used without change of AsH_{3} and $\mathrm{SeH}_{3}{ }^{+}$, respectively.
(9) A wide variety of geometries are summarized in G. W. Keoppl, D. S. Sagatys, G. S. Krishnamurthy, and S. I. Miller, J. Am. Chem. Soc., 89, 3396 (1967).
(10) Minimum basis set calculations for these molecules give $\mathrm{M}-\mathrm{H}$ bond lengths that are somewhat too long and $\mathrm{H}-\mathrm{M}-\mathrm{H}$ bond angles that are somewhat too large
(11) E. Clementi and D. L. Raimondi, J. Chem. Phys., 36, 2686 (1963).
(12) K. F. Freed, Chem. Phys. Lett., 2, 255 (1968)
(13) D. S. Marynick and D. A. Dixon. Proc. Natl. Acad. Sci. U.S.A., 74, 410 (1977).
(14) D. A. Dixon and D. S. Marynick, unpublished work.
(15) J. D. Andose, A. Rauk, and K. Mislow, J. Am. Chem. Soc., 96, 6904 (1974).
(16) Alrichs et al. ${ }^{5 d}$ have shown that the effect of additional polarization functions beyond the polarized double zeta level on the inversion barrier in PH_{3} is likely to be $<1 \mathrm{kcal} / \mathrm{mol}$ within the SCF approximation. They further estimate that correlation energy lowers the computed barrier from $38 \mathrm{kcal} / \mathrm{mol}$ (SCF) to $35 \mathrm{kcal} / \mathrm{mol}$ (including correlation); however, we have recently obtained a value of $35.7 \mathrm{kcal} / \mathrm{mol}$ for PH_{3} using a very large Slater orbital basis set without correlation corrections. ${ }^{5 \mathrm{~b}}$
(17) J. L. Franklin and J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxı, and F. H. Field, "lonization Potentials, Appearance Potentials and Heats of Formation of Gaseous Positive lons', NSRDS-NBS 36, U.S. Government Printing Office, Washington, D.C., 1969.
(18) W. Cherry and N. Epiotis, J. Am. Chem. Soc., 96, 1135 (1976).
(19) We note that the minimum basis set barrier for $\mathrm{SH}_{3}{ }^{+}$is $\sim 10 \mathrm{kcal} / \mathrm{mol}$ too low and the agreement is not so good as expected.

David A. Dixon, Dennis S. Marynick*
Gibbs Laboratory, Chemistry Department
Harvard University, Cambridge, Massachusetts 02138
Received January 18, 1977

Nature of the Iron-Oxygen Bond in Oxyhemoglobin

Sir:
The nature of the iron-oxygen bond in oxyhemoglobin has been a controversial problem for decades. Although x-ray data from model compounds'-support the bent $\mathrm{Fe}-\mathrm{O}(1)-\mathrm{O}(2)$ geometry proposed by Pauling, ${ }^{2}$ questions concerned with the details of the bonding, including the charge on the oxygen (O_{2} or $\mathrm{O}_{2}{ }^{-}$), ${ }^{2-4}$ have not been resolved. In this communication we present the results of two quantum mechanical calculations which support a neutral oxygen model and show that it is consistent with Mossbauer and vibrational spectra data that have been interpreted as favoring a $\mathrm{Fe}^{+3}-\mathrm{O}_{2}-$ unit. Analysis of the electronic structure shows that it can be considered to arise from the interaction of an iron porphine moiety and an O_{2} molecule with both species in either $S=0$ or $S=1$ valence states; the latter corresponds to ozone-like bonding, an analogy mentioned by Pauling ${ }^{2}$ and emphasized recently by Goddard and Olafson. ${ }^{4}$

The system treated consists of a planar iron porphine with an imidazole group and an oxygen molecule as axial ligands. The geometry is that given by Collman et al. $;{ }^{1}$ the porphine is in the $x y$ plane with the x and y axes bisecting the $\mathrm{N}-\mathrm{Fe}-\mathrm{N}$ angles and both the imidazole and the FeO_{2} unit are in the $y z$ planc. The first calculation is of the extended SCF-CI Par-iser-Parr-Pople (PPP) type. ${ }^{5}$ It includes the iron 3d, 4s, and $4 p$ orbitals, the oxygen $2 s$ and $2 p$ orbitals, the nitrogen lonepair σ orbitals, and the π orbitals of the porphine and imidazole. The iron, porphine, and imidazole parameters were taken from ref 5 and those for oxygen from a PPP study of ozone. ${ }^{6}$ The second calculation employs the $\mathrm{X} \alpha$ multiple scattering method, ${ }^{7}$ which has been shown to yield excellent results for copper porphine. ${ }^{8}$

The charge distribution obtained in the PPP calculation corresponds to a neutral oxygen $(O(1),+0.14 ; O(2),-0.08)$, an iron atom with net charge +0.44 , and an imidazole group with a charge of +0.31 . For the $\mathrm{X} \alpha$ wave function, a simple decomposition into atomic charges has been found not to be meaningful. ${ }^{8}$ However, the charge distributions obtained from other calculations do correlate with the $\mathrm{X} \alpha$ atomic potentials. These indicate that in the O_{2} unit the atoms are very similar to each other and to a free oxygen atom, with $\mathrm{O}(1)$ slightly positive. The Fe potential is that appropriate for a positive iron (+0.1).

To test the charge distributions, we consider first the electric field gradient tensor (EFG) at the iron nucleus evaluated from the Mössbauer spectrum. Since the EFG depends upon the individual orbital populations, we compare four different FeO_{2}

